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A comprehensive correlation has been developed of the drag coefficient for nonspherical isometric
particles as a function the Reynolds number and the particle sphericity on the basis of data reported
in the literature. The proposed formula covers the Stokes, the transitional and the Newton region. The
predictions of the reported correlation have been compared to experimental data measured in this
work with the dolomitic materials in respect to their use in calcination and gas cleaning processes
with fluidized beds. Approximative explicit formulae have also been reported that make it possible to
estimate the terminal free-fall velocity of a given particle or to predict the particle diameter corre-
sponding to a fluid velocity of interest.

Sulfur dioxide as well as other acidic gaseous pollutants (e.g., hydrogen chloride and
hydrogen fluoride) can be controlled by means of alkaline earth oxides, hydroxides or
carbonates1. Whereas previous investigations have mostly been confined to calcium-
based sorbents (calcium quicklime, calcium hydrate), the use of dolomitic materials
(dolomitic quicklime, dolomitic hydrate) is a more practical expedient for once-through
technologies. In difference to the limestone-based materials, there is very little informa-
tion available on the dolomite-derived solids.

Harmful gaseous pollutants are removed by the entrained sorbent particles in the
duct, the transport-line reactor or in the circulating fluidized bed or by passing through
the bubbling fluidized bed of sorbent2–4. Under the operation conditions usually found
in the cleaning processes, the precursor particles (carbonate, hydroxide) decompose
first forming particles of the corresponding metal oxides5,6 which subsequently react
with the gaseous species.

In addition to the above situations, the needs frequently occur in other engineering
problems to deal with the motion of solid particles in fluids. The terminal velocities of
isolated particles free-falling in an infinite fluid are needed in cyclone design, classifi-
cation, crystallization and in fluidized bed processes. As our recent comprehensive re-
views7,8 indicate, the terminal velocity of spherical particles falling in an infinite
Newtonian fluid as well as the minimum fluidization velocity can accurately be pre-
dicted. Reliable correlations are available in the literature9,10 relating the drag coeffi-
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cient CD to the Reynolds number of spheres falling at their terminal velocities. Several
interpolation formulae of various form have also been developed11–15. Such explicit
relationships make it possible to eliminate the common need for an iterative solution
specifying the free fall conditions of spherical particles.

In contrast to spheres, little is known about the terminal velocity and settling charac-
teristics of irregular particles in fluids. This dearth of knowledge results mainly from a
fact that the drag on nonspherical particles is strongly dependent on their shape, and
because the shape cannot be simply or precisely described, even with the use of current
advanced techniques. Different approaches to the free settling of nonspherical bodies
can be found in the literature16–20.

This communication is a sequel to a previous work of ours21 on the rate of steady-
state motion of isomeric bodies (glass spheres, particles of limestone and lime) in an
infinite fluid. The objective of the present investigation is to provide the data on do-
lomitic materials as well as develop alternative relationships for estimating the settling
rates of nonspherical, isomeric particles.

THEORETICAL

When a particle moves through a fluid, there exists a resisting force called drag which
is dependent on the particle size, particle shape, an adequately defined area, relative
velocity and the density and the viscosity of the fluid. A dimensionless parameter,
called the drag coefficient, CD, is defined (see Eq. (1)) as the ratio of the drag force to
the inertial forces,

CD Ret
2 = 

4
3

Ar  . (1)

The sphericity, ψ, is usually employed as the single measure to account for particle
shape. It is introduced as the ratio

ψ = surface area of sphere/surface area of particle (2)

at the same volume.
Thus, ψ = 1 for perfect spheres and 0 < ψ < 1 for other bodies.
However, the sphericity is a theoretical concept which can be realized only imper-

fectly. There is no simple generally accepted method for measuring the sphericity of
smaller irregular particles. Fractal studies20,22 suggest that the surface area of many real
particles is generally indeterminate and is influenced by the technique with which it is
measured. It should be noted that the sphericity used in this work follows the packed
bed/Ergun approach23–25. For the sphericity of some regular bodies as well as for the
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sphericity of a number of common materials, the reader is referred to the data tabulated
in the review8.

A host of measures have been proposed for the size of nonspherical particles. As a
practical means, the equivalent spherical diameter, dsph, based on the same volume has
usually been employed. For isometric particles, the equivalent spherical diameter can
be approximated by the screen size:

dsph ≈ dscr = dp  . (3)

The particle size defined in this manner has been used in this study.

Development of a Correlation of the Drag Coefficient for Nonspherical Isometric
Particles

The experimental data amassed by Pettyjohn and Christiansen16 have been employed in
this study. Working with well-defined bodies, the authors16 determined by experiment
the settling velocities of the following isometric shapes: spheres (ψ = 1; 30 data points;
Re t  ε  <0.0359, 22 640>), cube  octahedrons (ψ = 0.906; 130 data points;
Ret ε <0.00592, 17 410>), octahedrons (ψ = 0.846; 80 data points; Ret ε <0.00837,
17 350), cubes (ψ = 0.806; 135 data points; Ret ε <0.0076, 16 080>) and tetrahedrons
(ψ = 0.670; 65 data points; Ret ε <0.00691, 13 310>). Settling rates were observed with
white mineral oil, water and water–glucose solutions in a 0.5 m × 0.5 m square settling
column and in a 0.2 m i.d, glass tube.

The results of Turton and Levenspiel9 and Haider and Levenspiel19 indicate that
various experimental data on free settling of particles can be fitted by a five-parameter
relationship

CD (Ret,ψ) = 
24
Ret

  1 + k1 Ret
k2
  + 

k3

1 + k4 Ret
k5

  . (4)

Using Eq. (4) we have searched for the values of k1 – k5 so as to minimize the sum
of squared errors, Q, defined by

Q = ∑ 
i = 1

n

(log10 CD,exp − log10 CD,calc)2  . (5)

This was performed with the aid of a flexible polyhedron search, also called the
simplex minimization. The resulting parameters k1 – k5 for the respective sphericities
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are given in Table I. Quality of the fit is documented using the standard deviation, s, as
a statistical measure

s = (Q/n)1/2  . (6)

As can be seen from the values of s given in Table I, the five-constant equation (4)
describes the experimental data quite well. This Table also shows that the para-
meters k1 – k5 are functions of the shape. Once such functions are established, it would
make it possible to interpolate for different sphericities of interest.

Optimization runs also indicated that there existed a dependence between the coeffi-
cients k4 and k5. Therefore, an average, constant value of k

_
5 = −1.26 was employed in

further search of CD = CD (Ret, ψ). Then, the respective parameters, k1 – k4 were estab-
lished as functions of sphericity as follows:

k1 = 2.9245 exp (−2.8416 ψ) (7)

k2 = 0.20477 + 0.45060 ψ (8)

TABLE I
Fitted parameters in the correlation (4) for bodies of different shape, evaluated on the basis of the
experimental results reported by Pettyjohn and Christiansen16

Parameter
Sphericity, ψ

 1a     0.906     0.846     0.806     0.670

   k1     0.173     0.224     0.264     0.287     0.425

   k2     0.657     0.609     0.597     0.561     0.540

   k3     0.413     0.763     1.139     1.334     1.829

   k4 16 300    7 843    9 369    2 652    1 556    

   k5   −1.09   −1.30   −1.31   −1.20   −1.38

Standard deviation, s     0.020     0.021     0.024     0.025     0.037

a Cofficients for spheres (ψ = 1) are taken from the work of Turton and Levenspiel9. The values are
based on more than four hundred experimental data points reported by different investigators for
spheres.
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k3 = 5.0178 − 4.6404 ψ (9)

k4 = 0.60430 exp (10.9399 ψ) (10)

k5 ≡ k
_

5 = −1.26 (11)

for ψ > 0.67.
It is of importance that on introducing Eqs (7) – (11) into Eq. (4), the increase of the

standard deviation, s, was practically negligible. Of course, the final empirical correla-
tion developed here, and embodied in Eqs (4) and (7) – (11), has usual limitations. It
should be applied with caution outside the experimental conditions from which it was
educed. We believe that the extrapolation to about ψ = 0.5 may be feasible.

For illustration, the drag coefficient, CD, has been computed for different Ret and ψ
from Eqs (4) and (7) – (11). The results are plotted in Fig. 1 and they show that the
proposed five-constant correlation is capable of describing a minimum on the curves
CD vs Ret for all the employed shapes. As evident, particles exhibite higher drag as they
become less spherical.

An alternative illustration of the function CD = CD (ψ, Ret) is presented in Fig. 2 for
two values of Ar (500 and 104) which approximately outline the range of experiments
carried out in this work.

Since Ret occurs in both Eq. (1) and Eq. (4), an adequate iteration technique is
needed to estimate the terminal velocity of a given spherical or nonspherical particle. In

0.1        10          103        105
Ret

5
4
3
2
1

CD

400

40

4

0.4

6

FIG. 1
Drag coefficient as a function of the Rey-
nolds number and the sphericity; ex-
perimental data points are results reported
by Pettyjohn and Christiansen16, the solid
lines show the drag coefficient predicted
from the correlation embodied in Eqs (4),
(7) – (11) for the respective shapes: 1 , ψ
= 1; 2 , ψ = 0.906; 3 , ψ = 0.846; 4 , ψ
= 0.806; 5 , ψ = 0.67; 6 , ψ = 0.5 (extra-
polation)
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design, a situation also frequently occurs when the diameter of particles, that are just
entrained under certain operation conditions, is to be predicted. For such cases it is
practical to rewrite Eq. (1) as

Ret = CD (Ret,ψ)/Y  , (12)

where Y is the dimensionless group defined by

Y = 4g(ρs − ρf) µf/(3Ut
3ρf

2)  . (13)

As can be seen, the diameter of particle does not occur in the quantity Y. To find the
particle size corresponding to a terminal velocity of interest, an iterative solution of Eq.
(12) together with the expression for CD = CD (Ret, ψ) must be sought. Elementary
procedure such as interval halving has proven to be effective.

Using the proposed correlation given by Eqs (4) and (7) – (11) we have made syste-
matic predictions of the free-fall conditions from Eq. (1) for selected values of the
Archimedes number (Ar ε <1, 5 . 107>) and the sphericity (ψ = 1, 0.8 and 0.5). The
estimated values of Ret, Y and CD are given in Table II. Our experience indicates that
such tabulated results are helpful in quick solving many engineering problems in which
various free-fall situations occur with nonspherical particles.

Some of the predictions of Eqs (4) and (7) – (11) will be compared in the following
part of the paper to new experimental results measured with crushed particles of do-
lomite and dolomitic lime.

0.5       0.7       0.9ψ

1

2

CD

6

4

2
FIG. 2

Dependence of the drag coefficient of a par-
ticle on its sphericity predicted from Eqs (4)
and (7) – (11): 1 Ar = 500 (Ret = 9.4 – 14.1),
2 Ar = 10 000 (Ret = 61.6 – 115)
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EXPERIMENTAL

The terminal velocities of narrow fractions of dolomite and dolomitic lime particles determined from
the dependence of pressure drop vs gas velocity for a shallow bed of such particles were measured
in a fluidization column25. A glass column of inside diameter 0.085 m and height 2 m was employed.
The flow rate of air was gradually increased and pressure drop of fluidized bed vs the superficial
velocity of air was recorded. The terminal velocities reported in this study are the arithmetic mean of
the velocity at which the decline in pressure drop becomes noticeable and that when practically all
the particles are entrained out of the column. These values are related to the mean sieve size of the
particles. As can be seen, the free fall of a particle through a static gas and moving the gas upwards
past the particle at the same relative velocity are not the identical situations. Such phenomena as a
velocity distribution across the column and random velocity fluctuations with respect to time may
become more or less significant in the latter process.

The difference between the start and the end of elutriation depends upon the width of a collected
fraction (0.025 – 0.13 mm). It increases from about 0.05 m s−1 for the smallest particles to about
0.25 m s−1 for the largest ones. Three to five replicate runs with the respective fractions showed re-
producibility of the terminal velocity better than 5%. Their values varied from 0.45 to 2.70 m s−1 for
the dolomite particles and from 0.40 to 2.48 m s−1 for the calcined particles.

The measurements were conducted under ambient conditions (ρair = 1.200 kg m−3, µair = 1.81 . 10−5 Pa s)
with a dolomite and its calcine. The particles comprised five narrow, carefully sieved fractions: 0.100
to 0.125 mm ( d

_
p = 0.112 mm), 0.20 to 0.25 mm ( d

_
p = 0.225 mm), 0.25 to 0.315 mm ( d

_
p = 0.282 mm),

0.40 to 0.50 mm ( d
_

p = 0.450 mm) and 0.50 to 0.63 mm ( d
_

p = 0.565 mm). The measured bulk density
of the dolomite and dolomitic lime particles amounted to 2 650 and 1 550 kg m−3, respectively. Par-
ticle sphericity was determined by a procedure based on pressure drop measurements of the fixed
(packed, static) bed23,26. Repeated measurements provided the averaged values of sphericity ψ = 0.6
(0.54 – 0.66) for dolomite and ψ = 0.8 (0.75 – 0.85) for dolomitic lime.

RESULTS AND DISCUSSION

The measurements of the terminal velocity of nonspherical, isometric particles have
been interpreted in terms of the drag coefficient and the Reynolds number correspond-
ing to the terminal velocity measured. These quantities for the five fractions of do-
lomite particles are plotted in Fig. 3. As can be seen the curve computed from Eqs (4)
and (7) – (11) follows reasonably the trend indicated by the experimental data points.
The largest difference between the experimental and predicted values amounts to about
30%. However, one should realize that with respect to Eq. (1), a given inaccuracy in the
Reynolds number results in a doublefold error in the drag coefficient. Possible effects
of the superficial gas velocity profile developed within the fluidization column as well
as velocity fluctuations cannot also be overlooked. We believe that the results plotted
in Fig. 3 as well as those in Fig. 4 demonstrate reasonable agreement between predicted
and experimental data on the drag coefficient for the nonspherical particles of dolomitic
materials.

Making use of the asymptotic expressions27 for Ret at very low and very high Rey-
nolds numbers leads to an explicit relationship between Ret and Y for different ψ
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Ret (Y,ψ) = 
CD

′

Y
 






1 + 





4.899
CD

′  K0.5




1.351

 . Y 0.6755







0.7402

  . (14)

The quantities CD
′  and K can be taken from the work of Pettyjohn and Christiansen16

for ψ ε <0.67, 1> as

K = 0.843 log10 (ψ/0.065)  , (15)

and

CD
′  = 5.31 − 4.88ψ  . (16)

Experience indicates, that the simplified Eqs (14) – (16) provide predictions of Ret as
a function of Y about 5 – 15% higher than those obtained from more rigorous Eqs (4),
(7) – (12).

0          50         100Ret

2

1

CD

20

10

FIG. 3
Comparison of the experimental and predicted
values of the drag coefficient for the particles
of crushed dolomite (ψ = 0.6); ❍  experimental
data. Curve 1 depicts the drag coefficient pre-
dicted by Eqs (4) and (7) – (11); curve 2 de-
picts the drag coefficient predicted with the use
of Eqs (14) – (16)

0         50        100Ret

2

1

CD

10

5

FIG. 4
Comparison of the experimental and predicted
values of the drag coefficient for the particles
of dolomitic lime (ψ = 0.8): ❍  experimental
data. Curve 1 depicts the drag coefficient pre-
dicted by Eqs (4) and (7) – (11); curve 2 de-
picts the drag coefficient predicted with the use
of Eq. (20)
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Using an approach similar to that of Churchill and Usagi27, Haider and Levenspiel19

proposed the following explicit relation between the dimensionless terminal velocity of
a particle, Ut

∗ , and its dimensionless diameter, d*, and sphericity, ψ:

Ut
∗  = 





18

d∗ 2 + 
2.335 − 1.744 ψ

d∗ 0.5





−1

(17)

for ψ ε <0.5, 1>.
With the use of the Reynolds and Archimedes numbers as variables

Ut
∗  = Ret/Ar1/3 (18)

d∗  = Ar1/3 (19)

the Haider and Levenspiel equation can be recast into the form

Ret = 
Ar

18 + (2.335 − 1.744 ψ) Ar1/2  . (20)

The explicit relationships (14) and (20) can be viewed as practical simplified ap-
proximations to rigorous Eqs (1), (4), (7) – (12). On the other hand, the use of Eqs (14)
and (20) eliminates the need for the iterative computations. The confrontations of Eqs
(14) and (20) with the iterative solutions shown in Figs 3 and 4 indicate that the dif-
ferences are less than 15%.

CONCLUSIONS

The presented relationships provide a well-founded possibility for predicting the
steady-state, free-fall conditions of nonspherical, isometric particles.

The results of elutriation experiments obtained with the dolomitic materials can read-
ily by employed in design and development of the calcination and gas cleaning pro-
cesses with a gas–solid contacting mode of interest.

The authors acknowledge the financial support extended by the Grant Agency of the Czech Republic
(Grant No. 203/94/0111) and the Grant Agency of the Academy of Sciences of the Czech Republic
(Grant No. 472113).
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SYMBOLS

Ar Archimedes number, Ar = dp
3 g ρf (ρs − ρf) / µf

2

CD drag coefficient of particle, CD = 4g dp (ρs − ρf) / (3Ut
2ρf)

CD,exp drag coefficient determined by experiment
CD,calc drag coefficient calculated
CD

′ quantity defined by Eq. (16)
dp diameter of particles, m
d
_

p mean diameter of particles, m
dscr screen size of particles, m
dsph equivalent spherical diameter or diameter of a sphere which has the same volume as the

particle, m
d* dimensionless particle diameter, d∗  = Ar1/3 = (3 CD Ret

2/4)1/3

g acceleration due to gravity, g = 9.807 m s−2

k1– k5 fitted constants in Eq. (4)
K quantity defined by Eq. (15)
n number of data points in evaluating constants
Q sum of squared errors defined in Eq. (5)
Ret Reynolds number at terminal velocity of falling particle, Ret = Ut dp ρf / µf

s standard deviation defined in Eq. (6)
Ut terminal, free fall velocity of particle, m s−1

Ut
∗ dimensionless terminal velocity of particle, Ut

∗  = Ret / Ar1/3 = Ut [ρf
2/ (g µf (ρs − ρf))]1/3

Y dimensionless group, Y = 4g (ρs − ρf) µf / (3 Ut
3ρf

2) = 4 Ar/(3 Ret
3) = CD/Ret

µf fluid viscosity, Pa s
ρf fluid density, kg m−3

ρs particle density (bulk), kg m−3

ψ particle sphericity, shape factor
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